Adaptation of silviculture to climate change

Peter Spathelf Eberswalde University for Sustainable Development (Germany)

International Conference on Multipurpose Forest Ecosystem Management in a Changing Environment Nanning, Nov 23-25, 2011

© 2002 M. Zebisch TUB/PIK

Outline

- 1. CC impacts on forests and vulnerability
- 2. Silvicultural legacy of Central Europe: Close-to-Nature Silviculture (CNS)
- 3. Strategies and options of adaptation by silviculture
- 4. CNS and adaptation principles; conclusions

Climate change in Germany: scenarios (A1b) Temperature

Stock (2008), (PIK)

Climate change in Germany: scenarios (A1b) Precipitation

Stock (2008), PIK

Herbst

Winter

Response: 1) growth

Adaptation of silviculture to climate change; Nanning, 23-25 Nov 2011

Hochschule für nachhaltige Entwicklung (FH)

Response: 2) salvage cutting

Salvage cutting in Europe since 1850 due to storm damage...

Dobbertin & DeVries (2008)

thousand m³

14

12

10

8

6

4

2

0

Response: 3) fire risk

Forest fires in Brandenburg (data acc. to Forest Service): Ø 1992-2005: 267 ha (514 fires/a)

Components of ecosystem vulnerability

Adaptive capacity

Vulnerability: tree species and regions

Categories of climate risk regions in Germany (CRAMER et al. 2005, *www.waldundklima.net*)

high		moderate	low	
 No Ge So bas lan Va Rh Press 	ortheastern ermany outheastern sin and hill ndscape illey of the river nine e-Alps	 West German lowland basins Central mountain ranges and Harz Erzgebirge, Thüringen and Bavarian forest Mountain ranges left and right of the river Rhine Alps Bavarian hill landscape 	 Northwest German lowlands 	

Outline

- 1. CC impacts on forests and vulnerability
- 2. Silvicultural legacy of Central Europe: Close-to-Nature Silviculture (CNS)
- 3. Strategies and options of adaptation by silviculture
- 4. CNS and adaptation principles; conclusions

Alfred Möller (1860 – 1922), Eberswalde

...introduced and promoted the concept of ,permanent forest' (continuous-cover forestry) in Germany

Close-to-nature silviculture (CNS) elements

- Promotion of the natural and/or site-adapted tree species composition, often based on the assumed potential natural vegetation,
- Promotion of mixed and 'structured' forests,

E.g. Silvicultural programme of Brandenburg 2004, principle 1:

....resilience of forests through more complex stand structures, mixed stands and long-term natural regeneration...'

Broad programme!

CNS extension

swalde

Hochschule für nachhaltige Entwicklung (FH)

CNS

tree species of assumed pnV

Hochschule für nachhaltige Entwicklung (FH)

2011

CNS

size of cutting areas and life span

CNS *integrative approach*

CNS status

Tree species and structural heterogenity

Outline

- 1. CC impacts on forests and vulnerability
- 2. Silvicultural legacy of Central Europe: Closeto-Nature Silviculture (CNS)
- 3. Strategies and options of adaptation by silviculture
- 4. CNS and adaptation principles; conclusions

Adaptation strategies

- Passive or autonomous adaptation (,succession')
- Active adaptation (,adaptation interventions')
 hotspots approach

from Millar et al. (2007, adapted)

Active adaptation: hotspots

Adaptation principles

- Maintain forest climate
- Reduce average growing stock
- Replace high-risk stands
- Increase species richness and structural diversity, and
- Maintain & increase genetic variation within tree species

Adaptation principles: results of a European survey

Hochschule für nachhaltige Entwicklung (FH)

Species richness/mixture: seepage

	Infiltration					
	m³/a	mm/a	% of			
			open land prec.			
Pine forests	300	47	7			
Beech forests	900	141	23			
Pine and beech	400	63	10			
forests						
		acc. to Müller (2007)				
	The Ara II'					
	the second second					
	and water and the					
Res 11/6 The Dist						
		and the second second				

Species richness/mixture: resilience

Species richness/mixture: genetic variation

Hochschule für nachhaltige Entwicklung (FH)

2011

Implementation: variable cutting schemes

Implementation: *planting 'new' provenances* of established species

Suitability of provenances with higher drought stress tolerance from Southeast Europe?

Czajkowski & Bolte (2006)

Implementation: planting 'new' species

Non-native tree species with good performance and low risk in Northeast Germany

- Douglas fir (Pseudotsuga menziesii)
- Black locust (Robinia pseudoacacia)
- Grand fir (Abies grandis)
- Red oak (Quercus rubra)
- Western red cedar (Thuja plicata)

Outline

- 1. CC impacts on forests and vulnerability
- 2. Silvicultural legacy of Central Europe: Closeto-Nature Silviculture (CNS)
- 3. Strategies and options of adaptation by silviculture
- 4. CNS and adaptation principles; conclusions

CNS compatible with adaptation principles?

Adpatation principle	Maintenance of forest climate	Reduction of average growing stock	Replacement of high-risk stands	Maintenance and increase of genetic variation within trees	INCREASE OF SPECIES RICHNESS AND STRUCTURAL DIVERSITY	Number of non- compatible principles ([–])
CNS type	and the second	-				
Single-tree selection system	+	+		+	-+	1-2
Group selection system	+	+	+	+	+	
Shelterwood system	+	+	+	+	+ -	1
NDBM	+-	+	+	+	+	1

from Brang, Larsen, Spathelf et al. (2011, in prep.)

 \rightarrow CNS compatible with adaptation principles, but needs some adjustments!

Conclusions I

- Increase of species richness, genetic variation and structural diversity most important adjustment screws for forest adaptation
- Temperate, subcontinental zone of Europe: High need for adapted forests to provide a high variety of goods and services; measures: forest conversion, structural enrichment, incorporation of stand legacies (higher degree of ,oldgrowthness'), forest conservation
- Tropics and subtropics: High importance of adapted tropical forests for global mitigation needs (REDD+), local livelihoods (safety nets for poor people) and for the containment of transboundary conflicts; <u>measures</u>: forest conservation ('no access'), SFM

Conclusions II

Suggestion for an integrative concept of adaptive forest management

from BOLTE, A., AMMER, C., LÖF, M., MADSEN, P., NABUURS, G.-J., SCHALL, P., ROCK, J. & SPATHELF, P. (2009): Adaptive forest management in central Europe: Climate change impacts, strategies and integrative concept. Scandinavian Journal of Forest Research 24. 473-482.

Thank you for your attention!

Forest conversion in pine stands near Eberswalde